
Domain Driven Design

Strategic patterns

• Ubiquitous language

• Bounded Context

• Event Storming

• Context Map

• Model Integrity

DDD – Strategic Patterns

Ubiquitous Language

DDD – Strategic Pattern

Words mean things

Ubiquitous Language

= Used everywhere:

in user stories, specifications, meetings, emails,

technical documentation, source code

• List of terms and definitions

• Maintained by the development team

• Changes of the language often imply changes to the source code as

well.

Eric Evans said: “use the model as the backbone of the language”

Nowadays we say: “use the language to build the model”

Ubiquitous Language

• Delete a booking

• Submit an order

• Update a job order

• Create an invoice

• Set the state of a game

➢ Cancel a booking

➢ Checkout

➢ Extend a job order

➢ Register/accept an invoice

➢ Start/pause the game

➢May contain technical terms like

login, security, database, cache

Use the language of domain experts

From: Patterns, Principles, and Practices

of Domain-Driven Design, page 49

• Keep model and code in sync with language

– Evans: continuous integration

• Use native language of the customer

– not always English, even for international teams

• Replace acronyms with domain specific alternatives

– Improves clarity

• Do not allow synonyms

– Reduces clarity

– Enforce the domain experts to do so!

Ubiquitous Language tips from experts:

Bounded Context

DDD – Strategic Pattern

Words mean different things

In different contexts

Ubiquitous ≠ Universal

• Unit of Language Consistency

– The setting in which a word or statement appears that determines its meaning

• Independent model for a specific purpose

• Make boundaries explicit

– Team organization (One team per bounded context)

– Usage in part of application

– Physical code base

– Database schemas

Bounded Context

• Duplicate concepts

– Two model elements that actually represent the same concept

• False cognates

– Two people who are using the same term

think they are talking about the same thing, but really are not.

Recognizing splinters

“Institute a process of merging all code and other implementation

artifacts frequently, with automated tests to flag fragmentation quickly.”

–– Eric Evans (2003): Domain Driven Design, page 343

• Reproducible merge/build technique

• Automated test suite

• Rules that set some reasonably small upper limit on the lifetime of

unintegrated changes

Continuous Integration

Event Storming

DDD – workshop-based method

• Invented by Alberto Brandolini, in 2013

– http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html

Event Storming

Very fast way to get a rough model
for a problem

Gather requirements from a
business oriented conversation

http://ziobrando.blogspot.com/2013/11/introducing-event-storming.html

• Several forms

– Big Picture

– Process Modelling

– Software Design

Event Storming

• Invite the right people:

– Business people, IT developers, UX people, (other stakeholders)

• Unlimited modelling space

• Model the whole business line

– do not focus on a particular area first!

• Can take a whole day!

Event Storming – Big Picture

1. Explore Domain Events (orange stickies)

2. Enforcing a timeline (breaks the silos, cross-department

conversation!)

3. Mark problems and hot spots as stickies (purple stickies)

4. Optionally go deeper by adding, step by step:

– people, (external) systems, problems, constraints, opportunities, value, etc,

5. Arrow-vote on major problems

Big Picture – steps

• Clarity

• Core domain visible

• Important bottlenecks visible

• Key blocker

– no backlog needed (this is it)

– no estimates (it is hard)

– DDD approach (experiment with it!)

Result of Big Picture session

Domain

Event

• Past tense

• Events that domain experts care about

• Using language domain experts

• Add time: from left to right

– Stack parallel events

• Questions (is this really the first event? Can there be more events?)

– Aim for everything

– Ambiguity is fine (for now)

time

time

Concern

Hot spot

• When adding time, discussions arise

– especially when crossing boundaries between department silos

• Mark those discussions

time

• Arrow-vote on major problems

time

• Clarity

• Core domain visible

• Important bottlenecks visible

• Key blocker

– no backlog needed (this is it)

– no estimates (it is hard)

– DDD approach (experiment with it!)

Result of Big Picture session

• Bounded contexts

• Boundary events

Other result of Big Picture

• Several forms

– Big Picture

– Process Modelling

– Software Design

Event Storming

• Invite the right people:

– Business people, IT developers, UX people, (other stakeholders)

• For one feature / epic / activity

• Read model + command → Domain Events + Read Model

Event Storming – Process Modelling

• Several forms

– Big Picture

– Process Modelling

– Software Design

Event Storming

1. Add domain events

2. Add definitions and concerns

3. Add Commands (with user roles, if appropriate)

4. Add External Systems

5. Add Policies

6. Add Read Models

7. Add Aggregates

8. Group strongly related aggregates in bounded contexts

Event Storming

Domain

Event

• Past tense

• Events that domain experts care about

• Using language domain experts

Domain Events

Add time:

• Order events from left to right

• Stack parallel events

• Ask Questions

– Is this really the first event? Can you think of more events?

• Question the language

– Force participants to be precise

time

time

• Definitions help towards a ubiquitous language

• Concerns/Risks are ways visualize problem areas

Definition
Concern /

Risk

time

Command

• Each Domain Event should have Command

– Except for time events

• Commands should express intent

• Commands are often triggered by a specific user role

Command

User Role

Customer

registered

Register

customer

receptionist
Workshop

planning

created

Create

workshop

planning

Reshedule

Maintenance

job

Maintenance

job canceled

Maintenance

job planned
receptionist

Command

• Imperative (Do it now!!)

• Can fail

• Can have a result

• Has a target

• Tightly coupled

Event

• Past tense (has happened)

• Cannot fail

• Broadcast

• Loosely coupled

Command vs Event in DDD

time

• Some commands addressed to external systems …

• … that may trigger new events

• Now is also a good moment to draw arrows to visualize the flow

External

System

Printer

Mail server

time

• Between command and domain event …

…AND between domain event and command

• Draw them out. There are often more than one suspects.

– Can a maintenance job always be planned?

– Whenever a day has passed, we always send an invoice?

Policy

No more than

three

parallel jobs
Maintenance

job Planned

Plan

maintenance

job

Maintenance

job

completed

yesterday

A day has

passed
Send Invoice

One job per

vehicle

time

• Represents (readonly) data that is used by users or by the system

• Users make decisions based on data

– The decision is captured as a Command

– The data is captured as a Read model

• A read model can also show the result to the user

Read

Model

Plan

maintenance

job

Customer

Vehicle

• A command changes an aggregate …

… which causes an event

Aggregate

Customer

Customer

registered

Register

customer

receptionist

Shopping

cart

Item added

to Cart
Add Item

customer

Remove

Item

customer

Item

removed

from Cart

Summary

Domain

Event
Command

Concern

/ Risk
Definition

External

System

Read

Model
AggregatePolicy

User Role

2.1. 3. 4.

5. 6. 7. 8.

• Plan maintenance jobs

– Register customer

– Register vehicle

• Send notifications for maintenance jobs that are due today

• Send invoices for completed maintenance jobs

https://github.com/EdwinVW/pitstop

Pitstop features
(Info Support Garage Case goes DDD)

https://github.com/EdwinVW/pitstop

• https://raw.githubusercontent.com/wiki/EdwinVW/pitstop/img/event-

storming-result.png

Result of Event Storming for Pitstop

https://raw.githubusercontent.com/wiki/EdwinVW/pitstop/img/event-storming-result.png
https://raw.githubusercontent.com/wiki/EdwinVW/pitstop/img/event-storming-result.png

Context Map

DDD – Strategic Pattern

• Web of bounded contexts

• About one bounded context for each business context (Conway’s Law)

• Upstream / Downstream

– Upstream always influences Downstream, maybe also the other way around

Context Map

Context map

Customer

Management

Vehicle

Management

Workshop Management

Invoicing

Notifications

Customer

Vehicle

Vehicle

Customer

Workshop

Planning

Maintenance

Job

Customer

Maintenance

Job

Invoice

Customer

Maintenance

Job

U D

U D

D

U

U D

U

D

D

Aggregate

Root

• Two teams working on two closely related models

• Overlapping bounded contexts

Shared Kernel

• When two teams share responsibility over shared model

• Usually changes more slowly than private model parts

• Frequent communication is paramount

Shared Kernel

• When one team is dependent on another team …

… and have a common interest

• Customer is actual client

• Supplier runs jointly developed automated acceptation tests

Customer/Supplier

U

D

• When one team is dependent on another team …

… but upstream has no motivation to provide for downstream’s needs

• Maybe upstream has many customers

• Downstream slavishly adheres to upstreams model

Conformist

U

D

• When interfacing with a system that has a ‘weak’ or ‘messy’ model

– Large existing system, legacy system

• Protect Downstream with anti-corruption layer

– e.g. Service – Adapter with Translators – Façade

Anti-corruption Layer

U
D

• No shared model

• Minimal to no data transfer

Separate ways

• When being upstream from many other teams/contexts

• Define a protocol

– Possibly with a published language

Open Host Service

	Slide 1: Domain Driven Design
	Slide 2: DDD – Strategic Patterns
	Slide 3: Ubiquitous Language
	Slide 4: Ubiquitous Language
	Slide 5: Ubiquitous Language
	Slide 6: Use the language of domain experts
	Slide 7
	Slide 8: Ubiquitous Language tips from experts:
	Slide 9: Bounded Context
	Slide 10: Ubiquitous ≠ Universal
	Slide 11: Bounded Context
	Slide 12: Recognizing splinters
	Slide 13: Continuous Integration
	Slide 14: Event Storming
	Slide 15: Event Storming
	Slide 16: Event Storming
	Slide 17: Event Storming – Big Picture
	Slide 18: Big Picture – steps
	Slide 19: Result of Big Picture session
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Result of Big Picture session
	Slide 25: Other result of Big Picture
	Slide 26: Event Storming
	Slide 27: Event Storming – Process Modelling
	Slide 28: Event Storming
	Slide 29: Event Storming
	Slide 30
	Slide 31: Domain Events
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Command vs Event in DDD
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: Summary
	Slide 46: Pitstop features (Info Support Garage Case goes DDD)
	Slide 47: Result of Event Storming for Pitstop
	Slide 48: Context Map
	Slide 49: Context Map
	Slide 50: Context map
	Slide 51: Shared Kernel
	Slide 52: Shared Kernel
	Slide 53: Customer/Supplier
	Slide 54: Conformist
	Slide 55: Anti-corruption Layer
	Slide 56: Separate ways
	Slide 57: Open Host Service

