
Deze template bevat twee ontwerpen:

Alle dia’s in je presentatie worden

Microservices

HAN minor

Lead software engineer

Tom.vandenberg@infosupport.com

Tom.vandenberg@ns.nl

Tom van den Berg

@TomB_171296

tom171296

www.blognet.tech

mailto:Tom.vandenberg@infosupport.com
mailto:Tom.vandenberg@infosupport.com

Web-scale architecture

Introduction into web-scale architecture

Monolith Soa Big ball of mud

Traditional architecture

• Bad maintainability
• Tight coupling
• Changes resonate throughout the entire

application landscape

• Bad scalability

• Low availability
• Often offline for upgrades or maintenance
• Services / system coupled @ runtime

• Long release-cycles

How can we change this?

Modern Web-scale

Architecture

Continuous

Delivery

Automation

Dev Ops

Agile

Approach

Introduction of the term “Web-scale”

In a research note that was published yesterday, Gartner introduced the term

“web-scale IT.” What is web-scale IT? It’s our effort to describe all of the things

happening at large cloud services firms such as Google, Amazon, Rackspace,

Netflix, Facebook, etc., that enables them to achieve extreme levels of service

delivery as compared to many of their enterprise counterparts.

In addition, while the term “scale” usually refers to size, we’re not suggesting that

only large enterprises can benefit. Another scale “attribute” is speed and so we’re

stating that even smaller firms (or departments within larger IT organizations) can

still find benefit to a web-scale IT approach. Agility has no size correlation so even

more modestly-sized organizations can achieve some of the capabilities of an

Amazon, etc., provided that they are willing to question conventional wisdom

where needed.

Architecture pattern based on small, specialized and

autonomous services that communicate using events. This
pattern enables agile teams to develop services autonomously

and release frequently.

Disclaimer!

• KISS, common sense and software craftsmanship are still the most

important tools of an engineer!

• Choose the best fit-for-purpose solution and architecture style based

on complexity and risks!

• Every decision is a trade-off!

Microservices

Microservices

• “Small” autonomous services that cooperate

– Designed around business domains /capabilities

(DDD bounded contexts)

– Simple to scale-out

– High cohesion / low coupling

• A Microservice is specialized in 1 thing

– Single responsibility principle

InsuranceService

+ RegisterPolicy

+ GetPolicy

+

RegisterCustomer

+ GetCustomer

+ MoveCustomer
+ HandlePayment

+ GetBalance

+

ChangeRiskProfil

e

+ CalculateProfit

+ …

PolicyService

+

RegisterPolicy

+ GetPolicy

CustomerService

+

RegisterCustome

r

+ GetCustomer

+ MoveCustomer

FinanceService

+

HandlePayment

+ GetBalance

InvestmentService

+

ChangeRiskProfil

e

+ CalculateProfit

Traditionally

(SOA)
Microservic

es

Exercise 1

• Make groups of 5;

• Get your team some sticky notes and a4 paper;

• Design a microservice architecture.

• Timebox:

– 20 min design

– 10 min discussion and questions

Transition to microservices

Strangler pattern

Monolith

Time

Monolith

Service

Monolith

Service

Service

Monolith

Service

Service

Service

Service

Service

Service

Service

Service

Service

Data management

Service A Service B

Id Naam Address Telephone

1 Tom X 06-…

Id Naam Address

1 Tom X

Microservices

• Data-duplication is often used to make each Microservice truly

independent @runtime

– No this is NOT evil (if done right!)

– Only duplicate data necessary for a service to operate

– Preferably only a read-model built from events

• There's still only 1 service that owns (and changes!) the data (system

of record)

Microservices

• communicate using “lightweight” protocols

– HTTP (Rest API + JSON) / TCP + ProtoBuf / Own implementation

– Choose between open or fast

• Primarily asynchronous communication

– Using a message broker can increase autonomy

Microservice principals

Hide

implementation

details

Modelled

around

business

domain

(DDD)

Decentralize

all things

(freedom for the

devops Teams)

Culture of

automation

Isolate failure

(Design for Failure)

Deploy

independently

()

Highly

observable

	Slide 1: Microservices
	Slide 2: Tom van den Berg
	Slide 3: Web-scale architecture
	Slide 4
	Slide 5: How can we change this?
	Slide 6: Introduction of the term “Web-scale”
	Slide 7
	Slide 8: Disclaimer!
	Slide 9: Microservices
	Slide 10: Microservices
	Slide 11
	Slide 12: Exercise 1
	Slide 13: Transition to microservices
	Slide 14: Data management
	Slide 15: Microservices
	Slide 16: Microservices
	Slide 17: Microservice principals

