
Deze template bevat twee ontwerpen:

Alle dia’s in je presentatie worden

Web-scale architecture

All cool stuff!

Recap

Deze template bevat twee ontwerpen:

Alle dia’s in je presentatie worden

Four Event-driven architectures

• Event notification

• Event-carried State Transfer

• Event Sourcing

• CQRS

Four forms of event-driven architectures

-Martin Fowler (GOTO 2017; https://www.youtube.com/watch?v=STKCRSUsyP0)

https://martinfowler.com/articles/201701-event-driven.html

+ decouple receiver from sender

- no statement of overall behavior

Event notification
(something has changed)

+ Even more decoupling

+ reduced load on supplier

- replicated data

- eventually consistency

Event-carried state transfer
(this particular thing has changed)

+ Audit

+ Debugging

+ Historic state

+ Alternative state

+ Memory Image

- Unfamiliar

- External systems

- Event Schema (changes)

- identifiers

- Asynchrony?

- Versioning?

Event sourcing

• Martin Fowler says: do not use this much

CQRS

Deze template bevat twee ontwerpen:

Alle dia’s in je presentatie worden

Autonomy over Authority

• Sharing data between BCs / services is not evil (if done right!)

• An autonomous service and team can deliver more value

• Can drastically reduce chatty service-interactions

• Can drastically improve availability

• Can improve cloud readiness

• Can be used for BI / Reporting

Autonomy over Authority

"Local" domain-model definition per context

http://martinfowler.com/bliki/BoundedContext.html

Every context its

own definition
Lead

Autonomy over Authority

Customer Management

Workshop Management

Invoicing

Notifications

CustomerRegistered

string CustomerId;

string Name;

string Address;

string PostalCode;

string City;
string TelephoneNumber;

string EmailAddress;

CustomerRegistered

string CustomerId;

string Name;

string TelephoneNumber;

CustomerRegistered

string CustomerId;

string Name;

string EmailAddress;

CustomerRegistered

string CustomerId;

string Name;

string Address;

string PostalCode;

string City;

Autonomy over Authority

Customer Management

Id Name Email Phone

Workshop Management

Id Name Phone

Notifications

Id Name Email

RegisterCustomer

1 John Doe jd@gmail.com 0678256417

1 John Doe 0678256417 1 John Doe jd@gmail.com

CustomerRegistered

CustomerRegistered CustomerRegistered

• Less == more!

• Shared data is always a read-only cache

• Make sure you know the maximum staleness-period of the data

• Share data using ETL or Events (or both)

• Make sure you can detect and handle missed events

Autonomy over Authority principles

Deze template bevat twee ontwerpen:

Alle dia’s in je presentatie worden

Eventual consistency

• For distributed systems the CAP theorem applies

• Consistency

– All nodes in the system see the same data at a certain moment in time

• Availability

– A node will always return a useful response (no exception or time-out)

• Partition Tolerance

– The system gracefully handles broken connection between nodes in a system

(network failure / crash / …)

Eventual Consistency

• According to the CAP theorem, in a distributed system its only possible

to adhere to two conditions at the same time - not to all three

• Since networks are not reliable by nature, we MUST be “partition

tolerant” (P)

• So we need to choose for either consistency (C + P) or availability

(A + P)

CAP theorem

Consistency

N1 N2

x x

Network

Client

Y

y

y

y
ok

o

k

Consistency

N1 N2

x x

Network

Client

Y

y

y

e
r
r
o
r

x
Time-out

Availability (A) is NOT guaranteed here.

Consistency (C) guaranteed here.

Availability

N1 N2

x x

Network

Client

Y

y

y

y

o

k

ok

!

Availability

N1 N2

x x

Network

Client

Y

y

y

o

k

Time-out

Consistency (C) is NOT guaranteed here.

Availability (A) is guaranteed here.

Availability + Eventual Consistency

N1 N2

x x

Network

Client

Y

y

o

k

y y

y

queue

Eventual Consistency

• EC is often not easily accepted

– “And what about “ACID” and 2PC?”

• Yet, in the “real” world almost every proces is EC

– Consider whether you really need full consistency when automating business

processes

– Users tend to “get” EC a lot better than we think

– EC can save you a lot of complexity and trouble (and $)

– Compensating actions vs. 2PC

Eventual Consistency

Deze template bevat twee ontwerpen:

Alle dia’s in je presentatie worden

CQRS

CQRS

• Command Query Responsibility Segregation

• Pattern that embodies separating updates and queries in a system

– Scale the update and query parts independently

– Decreases coupling between systems

– Enables a task oriented approach for your system (commands)

Evolution from SOA to CQRS

DB

Logic

UI

QueryCommand

Traditional

Architecture

Evolution from SOA to CQRS

DB

Logic

UI

QueryCommand

CQS

DB

Write

Model

UI

QueryCommand

CQRS Read

Model

DB

Write

Model

UI

QueryCommand

CQRS Read

Model

DBReplication

DB

Write

Model

UI

QueryCommand

CQRS Read

Model

DBProjector

DB

Write

Model

UI

QueryCommand

CQRS Read

Model

DB

E
v
e
n
ts

Queue / Broker

Projector

CQRS - Commands & Events

• Commands are the things that need to be executed

– Must state business intent

› So not “UpdateInventory” but “CheckOutItem”

– Always in the form <Verb><Noun>

– Can fail (because of business rule / invariants checks)

• Events are things that have happened

– Always in the form <Noun><Verb (past tense)>

› CustomerRegistered, ItemCheckedOut, AccountClosed, …

M
ic

ro
s
e
rv

ic
e

API Controller Message Receiver
(Background worker)

Command Handler Query Handler

Aggregate(s)
(Business Logic)

Projector(s)

Event
Store

Message Broker

RESTful API
(HTTP / JSON)

Projector(s)

Read
model(s)

API Controller

RESTful API
(HTTP / JSON)

Command Handler

Message Receiver
(Background worker)

Repository Repository Repository

UOW

Microservice

CQRS - under the covers

UI

Read

Model

Application

Service

Command

Handler

Domain Repository

DB / ES DB

Message-broker

Projector

Event Command

Dependency

CQRS

Service

Other domains / systems

SOA Service /

COTS /

…

QueryData

Adapter

tx

CQRS - CRUD vs. Task Based

CRUD

Last name

Street

Number Zip code

City

Active Yes

Save Cancel

First name

CQRS - CRUD vs. Task Based

Server

Client

DTO
<id/>

<firstName/>

<lastName/>
<adres/>

<active/>

DTO
<id/>

<firstName/>

<lastName/>
<adres/>

<active/>

?

Last name

Street

Number Zip code

City

Active Yes

Save Cancel

First name

CQRS - CRUD vs. Task Based

Task oriented
First name Last name Active

Deactivate

Deactivate

Activate

Activate

Deactivate

Activate

Deactivate

CQRS - CRUD vs. Task Based

Server

Client

DTO
<id/>

<firstName/>

<lastName/>
<adres/>

<active/>

Deactivate

Customer

Command

<id/>

!

First name Last name Active

Deactivate

Deactivate

Activate

Activate

Deactivate

Activate

Deactivate

CQRS - Business Intent

Server

Client

DTO
<id/>

<street/>

<number/>
<zipcode/>

<city/>

DTO
<id/>

<street/>

<number/>
<zipcode/>

<city/>

?

Last name

Street

Number Zip code

City

Active Yes

Save Cancel

First name

When city is changed,

should the zipcode also

be changed or is it a

correction of a typo that

was made during entry?

• Which business rules apply?

CQRS - Business Intent

Server

Client

DTO

<id/>

<street/>
<number/>

<zipcode/>
<city/>

CorrectAddress

Command

<id/>
<street/>

<number/>
<zipcode/>

<city/>

Last name

Street

Number Zip code

City

Active Yes

Save Cancel

First name

! !

RelocateCustomer

Command

<id/>
<street/>

<number/>
<zipcode/>

<city/>

Last name

Street

Number Zip code

City

Active Yes

Save Cancel

First name

Each field can be

changed (correction)

When city is changed,

the zipcode must also

be changed

• Handling a command is a 2 phase process:

– Check phase

› Check all invariants and business-rules to make sure the command can be executed

› External resources or services can be called in this phase

– Execution phase

› Update the state of the domain

› Events are published

• This separation paves the way for Event Sourcing

Command-handling

Deze template bevat twee ontwerpen:

Alle dia’s in je presentatie worden

Event Sourcing

• Event-sourcing is an alternative way of persisting the state of your

domain-objects

• Not normalized in an RDBMS, but as an immutable list of events that

have occurred over time

Event-sourcing

Event-sourcing

Order Order line

Customer

Order Registered

Item 891 added

Item 1077 added

Item 891 removed

Customer info added

Order confirmed

• Events are immutable and new events only be appended (not be

inserted in between)

– Think accountant’s ledger

– Appending “Correction” events are allowed

• Snapshots can be used to boost performance

– Only when absolutely necessary

– Splitting up the domain can eliminate the need for snapshots

Event-sourcing

• Append only, so super fast (no locking etc.)

• Ability to completely rebuild the state based on event history

• Ability to analyze behavior that occurred in the past

– Audit log for free

• State can be built-up by issuing events

– Simplifies automated testing

• Ability to apply changes in retrospect

Why event-sourcing?

Changes in retrospect

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)

• Premium is collected every 1st of the month
• Interest is payed out every 28th of the month

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

Date Event Amount Total (calculated)

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)
Date Event Amount Total

In memory

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)
Date Event Amount Total

re
p

la
y

In memory

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

11-06-2017 Payment received € 500,00 € 1.821,60

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)
Date Event Amount Total

In memory

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

re
p

la
y

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

28-08-2017 1% Interest payed out € 21,60 € 2.181,32

01-08-2017 Premium received € 150,00 € 2.159,72

28-07-2017 1% Interest payed out € 19,90 € 2.009,72

01-07-2017 Premium received € 150,00 € 1.989,82

28-06-2017 1% Interest payed out € 18,22 € 1.839,82

11-06-2017 Payment received € 500,00 € 1.821,60

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)
Date Event Amount Total

re
p

la
y

In memory

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

28-08-2017 1% Interest payed out € 21,60 € 2.181,32

01-08-2017 Premium received € 150,00 € 2.159,72

28-07-2017 1% Interest payed out € 19,90 € 2.009,72

01-07-2017 Premium received € 150,00 € 1.989,82

28-06-2017 1% Interest payed out € 18,22 € 1.839,82

11-06-2017 Payment received € 500,00 € 1.821,60

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Difference: € 515,15
(€ 500,- payment + € 15,15 interest)

Date Event Amount Total (calculated)
Date Event Amount Total

re
p

la
y

In memory

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

29-08-2017 Retro Payment 11-06 € 500,00 € 2.166,17

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

29-08-2017 Retro Correction 11-06 € 15,15 € 2.181,32

29-08-2017 Retro Payment 11-06 € 500,00 € 2.166,17

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

01-09-2017 Premium received € 150,00 € 2.331,32

29-08-2017 Retro Correction 11-06 € 15,15 € 2.181,32

29-08-2017 Retro Payment 11-06 € 500,00 € 2.166,17

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

28-09-2017 1% Interest payed out € 23,31 € 2.354,63

01-09-2017 Premium received € 150,00 € 2.331,32

29-08-2017 Retro Correction 11-06 € 15,15 € 2.181,32

29-08-2017 Retro Payment 11-06 € 500,00 € 2.166,17

28-08-2017 1% Interest payed out € 16,50 € 1.666,17

01-08-2017 Premium received € 150,00 € 1.649,67

28-07-2017 1% Interest payed out € 14,85 € 1.499,67

01-07-2017 Premium received € 150,00 € 1.484,82

28-06-2017 1% Interest payed out € 13,22 € 1.334,82

01-06-2017 Premium received € 150,00 € 1.321,60

28-05-2017 1% Interest payed out € 11,60 € 1.171,60

01-05-2017 Premium received € 150,00 € 1.160,00

28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00

01-04-2017 Account opened

€
-

€
-

Date Event Amount Total (calculated)

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

• Several ES products are available

• Evaluate your needs before adopting a product

– When only persistence of events is needed, custom built is fine

– When you need projections / aggregations / complex event processing on events, a

product can be more cost effective

Event-sourcing

• Optimizing code for Event Sourcing

• Database

• Optimistic Concurrency

• Performing an operation by Replaying an event

Optimizing code for Event Sourcing

public void PlanMaintenanceJob(PlanMaintenanceJob command)
{

// check business rules
this.NumberOfParallelMaintenanceJobsMustNotExceedAvailableWorkStations(command);
this.NumberOfParallelMaintenanceJobsOnAVehicleMustNotExceedOne(command);

// perform operation by ‘replaying’ an event
MaintenanceJobPlanned e = command.MapToMaintenanceJobPlanned();
RaiseEvent(e);

} Adds the event to list of events and
executes the replay-functionality for that event

AggregateID Version

Two tables with generic layout

for each aggregate type

Id AggregateID Order EventType EventData

The Serialized Event (in JSON)

• For each aggregate keep track of original version and current version
– Each time an event is applied, increase the current version

• After executing a command,
– Only add the new event(s) that occurred to the database …

– … when the original version of the aggregate is equal to the current version in the

database

• Options when concurrency errors occur
1. Redo the ‘Save’ action (often not desirable)

2. Restart the complete handling of the command again (if possible)

3. Raise error

Optimistic Concurrency

Deze template bevat twee ontwerpen:

Alle dia’s in je presentatie worden

Design for failure

• When building a distributed system things will be off-line

• Make sure you handle failure gracefully

• Beware of the "8 fallacies of distributed computing" (L. Peter Deutsch)

• Use (oss) libraries / frameworks to help you with this

• Support versioning in your contracts and end-points

• Be as idempotent as possible

• Be redundant when it counts

• Think about point-in-time restore when designing the system

Design for failure

• Errors WILL occur - make sure you can recover fast!

Design for failure

Availability =
MTTF

MTTF + MTTR

MTTF: Mean Time To Failure
MTTR: Mean Time To Recovery

No influence

(remember the “8 falacies”)

Lots of influence

(we write the code)

Isolation - Design for failure

• Introduce fault domains in your system

– Bulkhead pattern (nautical term)

– Make sure if something breaks, the system only breaks partially

• Built-in retries (with back-off) where possible

• “Fail fast”

– Circuit-breaker pattern

– Make sure you don’t keep waiting on time-outs from an unhealthy service

› This bogs down performance and starves thread pools

Circuit breaker

http://martinfowler.com/bliki/CircuitBreaker.html

	Default Section
	Slide 1: Web-scale architecture
	Slide 2: Recap
	Slide 3

	Event-driven architecture
	Slide 4: Four Event-driven architectures
	Slide 5: Four forms of event-driven architectures
	Slide 6: Event notification (something has changed)
	Slide 7: Event-carried state transfer (this particular thing has changed)
	Slide 8: Event sourcing
	Slide 9: CQRS

	Autonomy over authority
	Slide 10: Autonomy over Authority
	Slide 11: Autonomy over Authority
	Slide 12: "Local" domain-model definition per context
	Slide 13: Autonomy over Authority
	Slide 14: Autonomy over Authority
	Slide 15: Autonomy over Authority principles

	Eventually consistency
	Slide 16: Eventual consistency
	Slide 17: Eventual Consistency
	Slide 18: CAP theorem
	Slide 19: Consistency
	Slide 20: Consistency
	Slide 21: Availability
	Slide 22: Availability
	Slide 23: Availability + Eventual Consistency
	Slide 24: Eventual Consistency

	CQRS
	Slide 25: CQRS
	Slide 26: CQRS
	Slide 27: Evolution from SOA to CQRS
	Slide 28: Evolution from SOA to CQRS
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: CQRS - Commands & Events
	Slide 34
	Slide 35: CQRS - under the covers
	Slide 36: CQRS - CRUD vs. Task Based
	Slide 37: CQRS - CRUD vs. Task Based
	Slide 38: CQRS - CRUD vs. Task Based
	Slide 39: CQRS - CRUD vs. Task Based
	Slide 40: CQRS - Business Intent
	Slide 41: CQRS - Business Intent
	Slide 42: Command-handling

	Event-sourcing
	Slide 43: Event Sourcing
	Slide 44: Event-sourcing
	Slide 45: Event-sourcing
	Slide 46: Event-sourcing
	Slide 47: Why event-sourcing?
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Event-sourcing
	Slide 61
	Slide 62: Optimizing code for Event Sourcing
	Slide 63: Two tables with generic layout for each aggregate type
	Slide 64: Optimistic Concurrency

	Design for failure
	Slide 65: Design for failure
	Slide 66: Design for failure
	Slide 67: Design for failure
	Slide 68: Isolation - Design for failure
	Slide 69: Circuit breaker

