>

Web-scale architecture

All cool stuff!

_[nfoSupport

N\

MICRO
SERVICES

ToMAIN
DRIVEN
DESIG—H

CQ RS

EVENT

DRWEN
ARCHITECTURE

WEB-SCALE
ARCHITECTURE

PoLYG
LoT ¥ - EVENT

SOURCIN G

ActoR
ModE (L

NN

>

Four Event-driven architectures

_[nfoSupport

Four forms of event-driven architectures

Event notification
Event-carried State Transfer
Event Sourcing

CORS

-Martin Fowler (GOTO 2017, https://www.youtube.com/watch?v=STKCRSUsyPO0)
https://martinfowler.com/articles/201701-event-driven.html

4 Event notification

(something has changed)

+ decouple receiver from sender
- no statement of overall behavior

4 Event-carried state transfer
(this particular thing has changed)

+ Even more decoupling

+ reduced load on supplier
- replicated data

- eventually consistency

V

4 Event sourcing

+ Audit - Unfamiliar

+ Debugging - External systems

+ Historic state - Event Schema (changes)
+ Alternative state - identifiers

+ Memory Image - Asynchrony?

- Versioning?

4 CORS

« Martin Fowler says: do not use this much

>

Autonomy over Authority

_[nfoSupport

Autonomy over Authority

Sharing data between BCs / services is not evil (if done right!)

An autonomous service and team can deliver more value

Can drastically reduce chatty service-interactions

Can drastically improve availability

Can improve cloud readiness

Can be used for Bl / Reporting

4 'Local" domain-model definition per context

- - - o
- 's

- L PN
’ Sales Context N Y v .

, Opportunity

Support Context

(]
L]
4 I)
‘ Lead Customer
|

]

]

.
' ‘ Pipeline l Ticket ’
Territory I '
\ ; :
' . ,
']

:

'

’

Every context its
own definition

u u
Product Product
\ \ / f

. ’

]
]
Sales Person / [}
N
\ -

4

.
7 * o Product .
. - ® . Version ’
® - - 4
http://martinfowler.com/bliki/BoundedContext.html

Autonomy over Authority

4

CustomerRegistered

string Customerld;
CustomerRegistered string Name;

string Customerld; string TelephoneNumber;

string Name;
string Address;
string PostalCode;
string City;

CustomerRegistered

string Customerld;
string Name;
string Address;
string PostalCode;
string City;

string TelephoneNumber;
string EmailAddress;

CustomerRegistered

string Customerld,;
string Name;
string EmailAddress;

Autonomy over Authority

Customer Management
RegisterCustomer id | Name | Emal | Phone

1 JohnDoe jd@gmail.com 0678256417

IZI CustomerRegistered

|Z| CustomerRegistered E CustomerRegistered

Workshop Management Notifications
1 | Name | Phone | i | Name | Emall

1 JohnDoe 0678256417 1 JohnDoe jd@gmail.com

Autonomy over Authority principles

Less == more!

Shared data is always a read-only cache

Make sure you know the maximum staleness-period of the data

Share data using ETL or Events (or both)

Make sure you can detect and handle missed events

>

Eventual consistency

_[nfoSupport

Eventual Consistency

For distributed systems the CAP theorem applies

Consistency
— All nodes in the system see the same data at a certain moment in time

Avallability
— A node will always return a useful response (no exception or time-out)

Partition Tolerance
— The system gracefully handles broken connection between nodes in a system
(network failure / crash/ ...)

y

CAP theorem

« According to the CAP theorem, in a distributed system its only possible
to adhere to two conditions at the same time - not to all three

« Since networks are not reliable by nature, we MUST be “partition
tolerant” (P)

* SO0 we need to choose for either consistency (C + P) or availability
(A+P)

y

4 Consistency

Client

4 Consistency

N1

[Time-out

Consistency (C) guaranteed here.

Availability (A) is NOT guaranteed here.

y

4 Avallablility

Client

4 Avallability

N1

o

Time-out

Consistency (C) is NOT guaranteed here.

Availability (A) is guaranteed here.

y

4 Avallabllity + Eventual Consistency

queue

Eventual Consistency

Client

4 Eventual Consistency

« EC is often not easily accepted
— “And what about “ACID"” and 2PC?”

* Yet, in the “real” world almost every proces is EC
— Consider whether you really need full consistency when automating business
processes
— Users tend to “get” EC a lot better than we think
— EC can save you a lot of complexity and trouble (and $)
— Compensating actions vs. 2PC

>

CORS

_[nfoSupport

4 CORS

« Command Query Responsibility Segregation

« Pattern that embodies separating updates and queries in a system

— Scale the update and query parts independently
— Decreases coupling between systems
— Enables a task oriented approach for your system (commands)

4 Evolution from SOAto CQRS

Traditional
Architecture

4 Evolution from SOAto CQRS

CQS

CORS

Command

Replication

CORS

Command

Projector

CORS

Command

Queue / Broker

Projector

CORS

Command

4 CORS - Commands & Events

« Commands are the things that need to be executed

— Must state business intent
» So not “Updatelnventory” but “CheckOutltem”
— Always in the form <Verb><Noun>
— Can fall (because of business rule / invariants checks)

* Events are things that have happened

— Always in the form <Noun><Verb (past tense)>
» CustomerRegistered, ItemCheckedOut, AccountClosed, ...

Microservice

RESTful API
(HTTP / JSON)

Command Handler

Message Receiver API| Controller

(Background worker)

Command Handler

Aggregate(s)
(Business Logic)

Repository | Repository

RESTful API
(HTTP / JSON)

Query Handler

AP| Controller Message Receiver

(Background worker)

Repository

Read
model(s)

Message Broker

CQRS - under the covers
|:> Event -Command

- Query —» Dependency

Application
Service

Other domains / systems

Command

Handler SOA Service /

CQRS COTS/

Service

T

Message-broker

Projector

4 CORS - CRUD vs. Task Based

CRUD

First name ,

Last name

Street I
Number 3 Zip code [— —
City I]
Active ’?z]

Save Cancel

4 CORS - CRUD vs. Task Based

DTO DTO
<id/> <id/>
<firstName/> <firstName/>
<lastName/> <lastName/>
<adres/> <adres/>
<active/> <active/>

4 CORS - CRUD vs. Task Based

Task oriented

First name Last name Active

V2B Deactivate

‘ ~/ Deactivate

Activate

Activate

‘ ~/ Deactivate

Activate

e N\ N\ N\ N\ N\ N\ Y

‘ ~/ Deactivate

4 CORS - CRUD vs. Task Based

CON | B
. |

DTO Deactivate
<id/> Customer
<firstName/> Command
<lastName/>
<adres/> <id/>
<active/> 7

4 CQRS - Business Intent

DTO
<id/>
<street/>
<number/>
<zipcode/>
<city/>

DTO
<id/>
<street/>
<number/>
<zipcode/>
<city/>

When city is changed,
should the zipcode also
be changed oris it a
correction of a typo that
was made during entry?

4 CQRS - Business Intent

Y- ¢

DTO
<id/>
<street/>
<number/>
<zipcode/>
<city/>

4

CorrectAddress
Command
<id/>
<street/>
<number/>
<zipcode/>

Each field can be
changed (correction)

<city/> 7

When city is changed,
the zipcode must also
be changed

RelocateCustomer

Command
<id/>
<street/>
<number/>
<zipcode/>
<city/>

4

4 Command-handling

« Handling a command is a 2 phase process:

— Check phase
» Check all invariants and business-rules to make sure the command can be executed

» External resources or services can be called in this phase
— Execution phase

» Update the state of the domain

» Events are published

* This separation paves the way for Event Sourcing

>

Event Sourcing

_[nfoSupport

4 Event-sourcing

e Event-sourcing is an alternative way of persisting the state of your

domain-objects

 Not normalized in an RDBMS, but as an immutable list of events that

have occurred over time

4 Event-sourcing

Order confirmed

Customer info added

Order line

ltem 891 removed

Customer ltem 1077 added

ltem 891 added

Order Registered

y

4 Event-sourcing

« Events are immutable and new events only be appended (not be

Inserted in between)

— Think accountant’s ledger

— Appending “Correction” events are allowed

e Snapshots can be used to boost performance

— Only when absolutely necessary

— Splitting up the domain can eliminate the need for snapshots

y

Why event-sourcing?

Append only, so super fast (no locking etc.)

Ability to completely rebuild the state based on event history

Ability to analyze behavior that occurred in the past
— Audit log for free

State can be built-up by issuing events

— Simplifies automated testing

Ablility to apply changes in retrospect

Changes in retrospect

Date Event Amount Total (calculated)

28-08-2017 1% Interest payed out
01-08-2017 Premium received

28-07-2017 1% Interest payed out
01-07-2017 Premium received 150,00 € 1.484,82 * Premium is collected every 1st of the month

28-06-2017 1% Interest payed out 13,22 € 1.334,82 * Interest is payed out every 28th of the month

€ 16,50 € 1.666,17

€

€

€

€
01-06-2017 Premiumreceived € 150,00 € 1.321,60

€

€

€

€

150,00 € 1.649,67
14,85 € 1.499,67

28-05-2017 1% Interest payed out 11,60 € 1.171,60
01-05-2017 Premium received 150,00 € 1.160,00
28-04-2017 1% Interest payed out 10,00 € 1.010,00

01-04-2017 Payment received 1.000,00 € 1.000,00

€ €
01-04-2017 Account opened - -

Date

28-08-2017
01-08-2017
28-07-2017
01-07-2017
28-06-2017
01-06-2017
28-05-2017
01-05-2017
28-04-2017
01-04-2017

01-04-2017

Event

1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Payment received

Account opened

Amount

€
€
€
=
=
€
€
€
€
€

16,50
150,00
14,85
150,00
13,22
150,00
11,60
150,00
10,00

1.000,00
€

Total (calculated)

€ 1.666,17
€ 1.649,67
€ 1.499,67
€ 1.484,82
€ 1.334,82
€ 1.321,60
€ 1.171,60
€ 1.160,00
€ 1.010,00

€ 1.000,00
€

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

Date

28-08-2017
01-08-2017
28-07-2017
01-07-2017
28-06-2017
01-06-2017
28-05-2017
01-05-2017
28-04-2017
01-04-2017

01-04-2017

Event

1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Payment received

Account opened

Amount

€
€
€
=
=
€
€
€
€
€

16,50
150,00
14,85
150,00
13,22
150,00
11,60
150,00
10,00

1.000,00
€

Total (calculated)

€ 1.666,17
€ 1.649,67
€ 1.499,67
€ 1.484,82
€ 1.334,82
€ 1.321,60
€ 1.171,60
€ 1.160,00
€ 1.010,00

€ 1.000,00
€

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

In memory

Date Event Amount Total

Date

28-08-2017
01-08-2017
28-07-2017
01-07-2017
28-06-2017
01-06-2017
28-05-2017
01-05-2017
28-04-2017
01-04-2017

01-04-2017

Event

1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Payment received

Account opened

Amount

€
€
€
=
=
€
€
€
€
€

16,50
150,00
14,85
150,00
13,22
150,00
11,60
150,00
10,00

1.000,00
€

Total (calculated)

€ 1.666,17
€ 1.649,67
€ 1.499,67
€ 1.484,82
€ 1.334,82
€ 1.321,60
€ 1.171,60
€ 1.160,00
€ 1.010,00

€ 1.000,00
€

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

In memory

Date Event Amount Total

01-06-2017 Premiumreceived € 150,00 € 1.321,60
28-05-2017 1% Interest payed out € 11,60 € 1.171,60
01-05-2017 Premiumreceived € 150,00 € 1.160,00
28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00
S S
01-04-2017 Account opened - -

Date

28-08-2017
01-08-2017
28-07-2017
01-07-2017
28-06-2017
01-06-2017
28-05-2017
01-05-2017
28-04-2017
01-04-2017

01-04-2017

Event

1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Payment received

Account opened

Amount

€
€
€
=
=
€
€
€
€
&

16,50
150,00
14,85
150,00
13,22
150,00
11,60
150,00
10,00

1.000,00
€

Total (calculated)

€ 1.666,17
€ 1.649,67
€ 1.499,67
€ 1.484,82
€ 1.334,82
€ 1.321,60
€ 1.171,60
€ 1.160,00
€ 1.010,00

€ 1.000,00
€

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

In memory
Date Event Amount Total
11-06-2017 Paymentreceived € 500,00 € 1.821,60

01-06-2017 Premiumreceived € 150,00 € 1.321,60
28-05-2017 1% Interest payed out € 11,60 € 1.171,60
01-05-2017 Premiumreceived € 150,00 € 1.160,00
28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00
S S
01-04-2017 Account opened - -

Date

28-08-2017
01-08-2017
28-07-2017
01-07-2017
28-06-2017
01-06-2017
28-05-2017
01-05-2017
28-04-2017
01-04-2017

01-04-2017

Event

1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Payment received

Account opened

Amount

€
€
€
=
=
€
€
€
€
€

16,50
150,00
14,85
150,00
13,22
150,00
11,60
150,00
10,00

1.000,00
€

Total (calculated)

€ 1.666,17
€ 1.649,67
€ 1.499,67
€ 1.484,82
€ 1.334,82
€ 1.321,60
€ 1.171,60
€ 1.160,00
€ 1.010,00

€ 1.000,00
€

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

In memory

Date Event Amount Total

28-08-2017 1% Interest payed out € 21,60 € 2.181,32
01-08-2017 Premiumreceived € 150,00 € 2.159,72
28-07-2017 1% Interest payed out € 19,90 € 2.009,72
01-07-2017 Premiumreceived € 150,00 € 1.989,82
28-06-2017 1% Interest payed out € 18,22 € 1.839,82
11-06-2017 Paymentreceived € 500,00 € 1.821,60
01-06-2017 Premiumreceived € 150,00 € 1.321,60
28-05-2017 1% Interest payed out € 11,60 € 1.171,60
01-05-2017 Premiumreceived € 150,00 € 1.160,00
28-04-2017 1% Interest payed out € 10,00 € 1.010,00

01-04-2017 Payment received € 1.000,00 € 1.000,00
S S
01-04-2017 Account opened - -

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

Difference: € 515,15

(€500,- payment + € 15,15 interest)

In memory
i Date Event Amount Total
Date Event Amount Total (calculated)

= 28-08-2017 1% Interest payed out € 21,60 € 2.181,32
28-08-2017 1% Interest payed out € 16,50 € 1.666,17 01-08-2017 Premiumreceived € 150,00 € 2.159,72
01-08-2017 Premiumreceived € 150,00 € 1.649,67 28-07-2017 1% Interest payed out € 19,90 € 2.009,72
28-07-2017 1% Interest payed out € 14,85 € 1.499,67 : 01-07-2017 Premiumreceived € 150,00 € 1.989,82
01-07-2017 Premiumreceived € 150,00 € 1.484,82 28-06-2017 1% Interest payed out € 18,22 € 1.839,82
28-06-2017 1% Interest payed out € 13,22 € 1.334,82 11-06-2017 Payment received € 500,00 € 1.821,60
01-06-2017 Premiumreceived € 150,00 € 1.321,60 01-06-2017 Premiumreceived € 150,00 € 1.321,60
28-05-2017 1% Interest payed out € 11,60 €1.171,60 28-05-2017 1% Interest payed out € 11,60 € 1.171,60
01-05-2017 Premiumreceived € 150,00 € 1.160,00 01-05-2017 Premiumreceived € 150,00 € 1.160,00
28-04-2017 1% Interest payed out € 10,00 € 1.010,00 28-04-2017 1% Interest payed out € 10,00 € 1.010,00
01-04-2017 Payment received € 1.000,00 € 1.000,00 01-04-2017 Payment received € 1.000,00 € 1.000,00

€ € | € €

01-04-2017 Account opened - - 01-04-2017 Account opened - -

Date

28-08-2017
01-08-2017
28-07-2017
01-07-2017
28-06-2017
01-06-2017
28-05-2017
01-05-2017
28-04-2017
01-04-2017

01-04-2017

Event

1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Premium received
1% Interest payed out
Payment received

Account opened

Amount

€
€
€
=
=
€
€
€
€
€

16,50
150,00
14,85
150,00
13,22
150,00
11,60
150,00
10,00

1.000,00
€

Total (calculated)

€ 1.666,17
€ 1.649,67
€ 1.499,67
€ 1.484,82
€ 1.334,82
€ 1.321,60
€ 1.171,60
€ 1.160,00
€ 1.010,00

€ 1.000,00
€

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

Date Event Amount Total (calculated)

28-08-2017 1% Interest payed out € 16,50 € 1.666,17
01-08-2017 Premiumreceived € 150,00 € 1.649,67
28-07-2017 1% Interest payed out € 14,85 € 1.499,67
01-07-2017 Premiumreceived € 150,00 € 1.484,82
28-06-2017 1% Interest payed out € 13,22 € 1.334,82
01-06-2017 Premiumreceived € 150,00 € 1.321,60
28-05-2017 1% Interest payed out € 11,60 € 1.171,60
01-05-2017 Premiumreceived € 150,00 € 1.160,00
28-04-2017 1% Interest payed out € 10,00 € 1.010,00
€

01-04-2017 Payment received 1.000,00 € 1.000,00
€ S
01-04-2017 Account opened - -

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

Date Event Amount Total (calculated)

28-08-2017 1% Interest payed out
01-08-2017 Premium received
28-07-2017 1% Interest payed out
01-07-2017 Premium received
28-06-2017 1% Interest payed out
01-06-2017 Premium received
28-05-2017 1% Interest payed out
01-05-2017 Premium received
28-04-2017 1% Interest payed out
01-04-2017 Payment received

16,50 € 1.666,17
150,00 € 1.649,67
14,85 € 1.499,67
150,00 € 1.484,82
13,22 € 1.334,82
150,00 € 1.321,60
11,60 € 1.171,60
150,00 € 1.160,00
10,00 € 1.010,00

1.000,00 € 1.000,00
€ S
01-04-2017 Account opened - -

P N NI T NI ST NI PO NI,

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

Date Event Amount Total (calculated)
01-09-2017 Premiumreceived € 150,00 € 2.331,32

28-08-2017 1% Interest payed out € 16,50 € 1.666,17
01-08-2017 Premiumreceived € 150,00 € 1.649,67
28-07-2017 1% Interest payed out € 14,85 € 1.499,67
01-07-2017 Premiumreceived € 150,00 € 1.484,82
28-06-2017 1% Interest payed out € 13,22 € 1.334,82
01-06-2017 Premiumreceived € 150,00 € 1.321,60
28-05-2017 1% Interest payed out € 11,60 € 1.171,60
01-05-2017 Premiumreceived € 150,00 € 1.160,00
28-04-2017 1% Interest payed out € 10,00 € 1.010,00
€

01-04-2017 Payment received 1.000,00 € 1.000,00
€ €
01-04-2017 Account opened - -

29-08-2017: Process an additional payment
of € 500,- payed on June 11th 2017

Date Event Amount Total (calculated)

28-09-2017 1% Interest payed out € 23,31 € 2.354,63
01-09-2017 Premiumreceived € 150,00 € 2.331,32

| €2.181,32
20-08-2017 Retro Payment 11-06 € 500,00 €2.166,17
28-08-2017 1% Interest payed out € 16,50 € 1.666,17
01-08-2017 Premiumreceived € 150,00 € 1.649,67
28-07-2017 1% Interest payed out € 14,85 € 1.499,67
01-07-2017 Premiumreceived € 150,00 € 1.484,82
28-06-2017 1% Interest payed out € 13,22 € 1.334,82
01-06-2017 Premiumreceived € 150,00 € 1.321,60
28-05-2017 1% Interest payed out € 11,60 € 1.171,60
01-05-2017 Premiumreceived € 150,00 € 1.160,00
28-04-2017 1% Interest payed out € 10,00 € 1.010,00
€

01-04-2017 Payment received 1.000,00 € 1.000,00
€ €
01-04-2017 Account opened - -

4 Event-sourcing

« Several ES products are available

« Evaluate your needs before adopting a product
— When only persistence of events is needed, custom built is fine
— When you need projections / aggregations / complex event processing on events, a

product can be more cost effective

y

« Optimizing code for Event Sourcing
« Database
« Optimistic Concurrency

4 Optimizing code for Event Sourcing

« Performing an operation by Replaying an event

public void PlanMaintenanceJob(PlanMaintenanceJob command)

{

// check business rules
this.NumberOfParallelMaintenanceJobsMustNotExceedAvailableWorkStations(command);
this.NumberOfParallelMaintenanceJobsOnAVehicleMustNotExceedOne(command) ;

// perform operation by ‘replaying’ an event
MaintenanceJobPlanned e = command.MapToMaintenanceJobPlanned();
RaiseEvent(e);

} R Adds the event to list of events anal

executes the replay-functionality for that event '

4 Two tables with generic layout
for each aggregate type

; , ;47 VLYY@V\/O QA e
AggregatelD For D?t‘,wwstw conl V) e OVLW\ \oe YEP Y
.) o Tne /e
, L
y WV ewnt
L ne tyype of e sextalize?
The
< (e The Serialized Event (in JSON)

AggregateID EventType EventData

y

Optimistic Concurrency

* For each aggregate keep track of original version and current version
— Each time an event is applied, increase the current version

 After executing a command,
— Only add the new event(s) that occurred to the database ...
— ... when the original version of the aggregate is equal to the current version in the
database

« Options when concurrency errors occur
1. Redo the ‘Save’ action (often not desirable)
2. Restart the complete handling of the command again (if possible)
3. Raise error

y

>

Design for failure

_[nfoSupport

Design for failure

* When building a distributed system things will be off-line

« Make sure you handle failure gracefully

« Beware of the "8 fallacies of distributed computing" (L. Peter Deutsch)
» Use (oss) libraries / frameworks to help you with this

e Support versioning in your contracts and end-points

* Be as idempotent as possible

* Be redundant when it counts

« Think about point-in-time restore when designing the system

4 Design for fallure

« Errors WILL occur - make sure you can recover fast!

o MTTF
Avalilability =
/ MTTF |+ [MTTR }\
No influence Lots of influence
(remember the “8 falacies”) (we write the code)

MTTF: Mean Time To Failure
MTTR: Mean Time To Recovery

4 |Isolation - Design for failure

* |Introduce fault domains in your system

— Bulkhead pattern (nautical term)
— Make sure if something breaks, the system only breaks patrtially

 Built-in retries (with back-off) where possible

e “Fail fast”

— Circuit-breaker pattern

— Make sure you don’t keep waiting on time-outs from an unhealthy service
» This bogs down performance and starves thread pools

y

4 Circult breaker

client B supplier
L |
h .
- - — - T
call f raise circuit open ¢ — — — — |
| | connection |
SUCCESS
| | problem |
) F | | |
fail [threshold reached] | l | |
. P |
Closed Open >
) ’ /Y YAN = o ANy
reset timeout ¢ — — — I timeout! |
timeout!
| | |
. - |
fail [under threshald] '
-
fail ‘ 2\ i AN
/ ¢ — — — - timeout! |
timeout! b
rl
suCCess Half Open : i

A

<€ - — —
circuit open!

http://martinfowler.com/bliki/CircuitBreaker.html

	Default Section
	Slide 1: Web-scale architecture
	Slide 2: Recap
	Slide 3

	Event-driven architecture
	Slide 4: Four Event-driven architectures
	Slide 5: Four forms of event-driven architectures
	Slide 6: Event notification (something has changed)
	Slide 7: Event-carried state transfer (this particular thing has changed)
	Slide 8: Event sourcing
	Slide 9: CQRS

	Autonomy over authority
	Slide 10: Autonomy over Authority
	Slide 11: Autonomy over Authority
	Slide 12: "Local" domain-model definition per context
	Slide 13: Autonomy over Authority
	Slide 14: Autonomy over Authority
	Slide 15: Autonomy over Authority principles

	Eventually consistency
	Slide 16: Eventual consistency
	Slide 17: Eventual Consistency
	Slide 18: CAP theorem
	Slide 19: Consistency
	Slide 20: Consistency
	Slide 21: Availability
	Slide 22: Availability
	Slide 23: Availability + Eventual Consistency
	Slide 24: Eventual Consistency

	CQRS
	Slide 25: CQRS
	Slide 26: CQRS
	Slide 27: Evolution from SOA to CQRS
	Slide 28: Evolution from SOA to CQRS
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33: CQRS - Commands & Events
	Slide 34
	Slide 35: CQRS - under the covers
	Slide 36: CQRS - CRUD vs. Task Based
	Slide 37: CQRS - CRUD vs. Task Based
	Slide 38: CQRS - CRUD vs. Task Based
	Slide 39: CQRS - CRUD vs. Task Based
	Slide 40: CQRS - Business Intent
	Slide 41: CQRS - Business Intent
	Slide 42: Command-handling

	Event-sourcing
	Slide 43: Event Sourcing
	Slide 44: Event-sourcing
	Slide 45: Event-sourcing
	Slide 46: Event-sourcing
	Slide 47: Why event-sourcing?
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60: Event-sourcing
	Slide 61
	Slide 62: Optimizing code for Event Sourcing
	Slide 63: Two tables with generic layout for each aggregate type
	Slide 64: Optimistic Concurrency

	Design for failure
	Slide 65: Design for failure
	Slide 66: Design for failure
	Slide 67: Design for failure
	Slide 68: Isolation - Design for failure
	Slide 69: Circuit breaker

